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Abstract
This paper focuses on the problem of selecting relevant features extracted from human polysomnographic (PSG) signals to perform accurate

sleep/wake stages classification. Extraction of various features from the electroencephalogram (EEG), the electro-oculogram (EOG) and the

electromyogram (EMG) processed in the frequency and time domains was achieved using a database of 47 night sleep recordings obtained from

healthy adults in laboratory settings. Multiple iterative feature selection and supervised classification methods were applied together with a

systematic statistical assessment of the classification performances. Our results show that using a simple set of features such as relative EEG powers

in five frequency bands yields an agreement of 71% with the whole database classification of two human experts. These performances are within

the range of existing classification systems. The addition of features extracted from the EOG and EMG signals makes it possible to reach about 80%

of agreement with the expert classification. The most significant improvement on classification accuracy is obtained on NREM sleep stage I, a stage

of transition between sleep and wakefulness.

# 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Polysomnography (PSG) consists in study of sleep and

wakefulness from the concurrent recording of multiple bio-

electric signals including the electroencephalogram (EEG),

electro-oculogram (EOG) and electromyogram (EMG). A

system of standardized rules established in the conventional

Rechtschaffen and Kales (R&K) human sleep/wake stage

scoring manual [1] enables the visual recognition by medical

and technical experts of up to six different vigilance stages:

wakefulness, non-rapid eye-movement (NREM) sleep stages I,

II, III and IV, and REM or paradoxical sleep (PS). NREM stages
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III and IV represent the slow wave sleep (SWS). The successive

visual interpretation, by 20 or 30 s epochs, of 8–24 h PSG

recordings leads to the representation of the temporal distribution

of sleep/wake stages called a hypnogram, an example of which is

presented in Fig. 1. A hypnogram reveals the internal architecture

of sleep and the alternation of NREM and REM sleep phases,

which makes the discrimination between normal and abnormal

sleep much simpler. PSG is thus a powerful tool in the diagnosis

of sleep disorders, which are rather common with about 5% of the

general population affected [2].

Since 1970 and the development of computerized methods,

automated systems have emerged in order to automatically

score PSG recordings, so as to avoid the expert to spend too

much time to this tedious and time-consuming work. The visual

interpretation of PSG recordings is a typical pattern recognition

task. Physicians look at the signals and classify successive

epochs from the shape of their traces. Two problems must be
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Fig. 1. An example of hypnogram obtained from a night-time PSG recording.

Table 1

Description of the database used in this study (number of epochs in the sleep/

wake stages)

Wake NREM I NREM II SWS PS

Full database 5232 1989 32966 7701 15,366

Reduced database 1914 1879 2206 1902 2,099
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solved to obtain automatic classifiers able to obtain results

similar to human experts: to choose the classification function

that will give the best results on this problem and to process the

signals with adequate techniques so as to obtain inputs to the

classifier (features) which are the most similar to the visual

information used by the expert.

An important number of publications can be found in the

literature on automatic sleep/wake stages analysis. Many of

these papers focus on the choice of an adequate type of

classifier to achieve accurate classification. The authors use

either classical algorithms or artificial intelligence methods,

such as neural networks [3–7]. Features used as inputs to the

classification systems are extracted from PSG signals at

constant intervals (epoch) using various signal processing

techniques operating in the time domain and/or in the frequency

domain. Though several propositions were made to process the

PSG signals, only few studies have been performed to

determine the optimal set of features achieving an accurate

sleep/wake stage classification [8–14].

Thanks to the development of computerized methods and in

parallel to automated systems, a research field has emerged,

known as data mining or knowledge discovery. This research

field proposes methods that enable the extraction of knowledge

from large sets of examples [15]. The aim of the study presented

in this paper was to apply data mining methods to extract

knowledge about sleep/wake stages classification. Knowledge

extraction was performed from a large database composed of 47

night sleep recordings from 41 healthy subjects. Feature

selection algorithms and systematic statistical assessment were

performed to determine which signals and processing methods

are the most relevant and accurate for sleep/wake stage

automated classification.

The outline of the paper is the following. The whole database

and the techniques used to process the signals and extract the

features are presented in Section 2. The features selection

methods used are described in detail in Section 3. The results

are presented in Section 4 and discussed in Section 5.

2. Materials

2.1. Presentation of the PSG recording database

In this study, a large database of PSG recordings was used.

The full database contains 47 night-time PSG recordings

obtained from 41 healthy adult subjects (19–47 years old, 39
males and 2 females). Recordings were made continuously

during the night (8 h between 22:00 h and 06:00 h). Four EEG

channels (C3-A2, P3-A2, C4-A1, and P4-A1), one transversal

EOG and one chin EMG were registered and digitized at a

sampling frequency f s = 128 Hz. The EEG leads were attached

onto the scalp according to the International 10-20 EEG System

of Electrodes Placement [16].

All the 47 PSG recordings were visually interpreted by two

independent sleep physicians. Visual sleep/wake stage scoring

was performed with constant epoch duration of 20 s according

to the conventional rules of the R&K manual [1]. Each epoch

was thus classified into one of five different stages:

wakefulness, NREM sleep stage I, NREM sleep stage II, slow

wave sleep (SWS or NREM stages III and IV), and paradoxical

sleep. To avoid the introduction of expert inaccuracies in the

database, only the epochs classified in the same stage by both

experts were considered in this project. They represent 84% of

the original PSG recording database and only that subset was

used to form our study database. The total number of epochs

included was 63,254. As it can be seen in Table 1, the number of

epochs classified in each sleep/wake stage is different. NREM

stage II lasts a long time, whereas NREM stage I is rather short.

To avoid classification errors related to differences in the

sample size of each class, the database was further reduced to a

smaller one where each class is composed of about the same

number of epochs. The numbers of epochs classified in each

sleep stage for the database reduced are presented in the second

row of Table 1.

The database used in this study thus consisted of 10,000

randomly selected epochs classified into one of the five sleep/

wake stages. The set S of 10,000 epochs was split in 10 subsets

S = {S1, S2, . . ., S10}, each subset Sk containing 1000 epochs,

equally distributed in the five classes. The size of the subsets

(1000 epochs) was chosen from a previous study whose goal

was to analyze the effect of the number of examples on the

classification error [17]. Its main conclusion was that a minimal

number of 500 examples was required to train and validate a

classifier on a sleep/wake classification problem and get an

unbiased evaluation of the classification accuracy.

2.2. Features extracted from the PSG recordings

Each epoch stored in the database consists of a 20 s

recording of six signals (four EEG, one EOG and one EMG)

[18]. Since the PSG recordings were sampled at 128 Hz, each

time series contains 2560 samples. Various features describing

different signal characteristics were extracted from each signal

using multiple processing techniques. The PRANA software for

PSG analysis (PhiTools, Strasbourg, France) was used to
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visually interpret the recording database and to perform feature

extraction.

EEG is traditionally analyzed in the frequency domain, since

each sleep stage is characterized by a specific pattern of

frequency contents, but some useful information can be added

from temporal analysis. EOG and EMG are most often

analyzed in the time domain, because these signals do not

exhibit obvious frequency patterns.

2.2.1. EEG features

� A set of five features was used to describe the spectral activity
of the EEG in traditional frequency bands [19,20]. They were

calculated using Fourier transformation. Relative powers

were computed in five frequency bands by dividing absolute

powers in each frequency range by the sum of powers in the

0.5–32.5 Hz frequency range:

� Prel(EEG, dFT) with dFT = [0.5; 4.5] Hz;

� Prel(EEG, uFT) with uFT = [4.5; 8.5] Hz;

� Prel(EEG, aFT) with aFT = [8.5; 11.5] Hz;

� Prel(EEG, sFT) with sFT = [11.5; 15.5] Hz;

� Prel(EEG, bFT) with bFT = [15.5; 32.5] Hz.
� A
nother set of five features was used to characterize the EEG

signal. They were computed from the Wavelet coefficients

generated by discrete Wavelet transform. A four-level

Wavelet packet decomposition (with Daubechies3 Wavelet)

was used to compute the features in the five frequency bands

considered:

� dWT = [0; 4] Hz;

� uWT = [4; 8] Hz;

� aWT = [8; 12] Hz;

� sWT = [12; 16] Hz;

� bWT = [16; 32] Hz.
The information contained in the selected arrays of

Wavelet coefficients is characterized by the quadratic mean

value (root mean square value, RMS) of the coefficients:

RMSFB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m� 1

Xm

i¼1

cFBðiÞ2
s

(1)

where m is the number of Wavelet coefficients cFB(i) in each

frequency band FB and FB 2 {dWT, uWT, aWT, sWT, bWT}.

The features are then expressed as relative values of RMSFB

computed over these five frequency bands and are labeled as

{RMSrel d, RMSrel u, RMSrel a, RMSrel s, RMSrel b}.
� F
ive features were used to describe the signal in the time

domain, namely, the signal entropy, the 75th percentile of the

signal distribution, the standard deviation, the skewness and

kurtosis numbers.

The entropy, entrEEG [21], is computed from a histogram of

the signal during one epoch:

entrEEG ¼ �
XN

j¼1

n j

n
ln

n j

n
(2)
where n is the number of samples y(i) of the measured signal y

in the epoch, N the number of bins used for the calculation of

the histogram and nj is the number of samples y(i) which values

are within the jth bin. In this study, N is chosen as the largest

integer inferior to n squared root, it is the same for each epoch.

The 75th percentile of the signal distribution, prctile75EEG,

is defined as

cardfyðiÞ=yðiÞ< prctile75EEGg ¼
75n

100
(3)

where n is the number of samples y(i) of the measured signal y

in the epoch and card stands for the number of elements in the

set.

The standard deviation, stdEEG, is defined as

stdEEG ¼
�

1

n� 1

Xn

i¼1

ðyðiÞ � ȳÞ2
�1=2

(4)

where n is the number of samples y(i) of the measured signal y

in the epoch and ȳ represents the mean value (5) of the signal y:

ȳ ¼ 1

n

Xn

i¼1

yðiÞ (5)

The skewness, skewEEG, is defined as

skewEEG ¼
M3

M2

ffiffiffiffiffiffiffi
M2

p (6)

with

Mk ¼
1

n

Xn

i¼1

ðyðiÞ � ȳÞk (7)

The kurtosis, kurtEEG, is defined as

kurtEEG ¼
M4

M2M2

(8)

2.2.2. EMG and EOG features

EMG and EOG signals were processed in the time domain.

Both signals are characterized by their entropy {entrEMG,

entrEOG}, their 75th percentile {prctile75EMG, prctile75EOG},

their standard deviation {stdEMG, stdEOG}, their skewness

{skewEMG, skewEOG} and their kurtosis {kurtEMG, kurtEOG} as

defined in Eqs. (2)–(8).

The EMG signal was also processed in the frequency

domain. The relative power of the EMG signal in a high

frequency band [12.5; 32] Hz, Prel(EMG, high), was calculated

as

PrelðEMG; highÞ ¼ PðEMG; ½12:5�32 Hz�Þ
PðEMG; ½8�32 Hz�Þ (9)

2.3. Transformation of the features

In order to reduce the influence of extreme values that are

often observed on physiological variables, each feature of the



Table 2

Transformations toward normal distribution

Feature Transformation

Prel d, Prel u, RMSrel d, RMSrel u arcsinð
ffiffiffi
x
p
Þ

Prel a, Prel s, Prel b, Prel(EMG, high),

RMSrel a, RMSrel s, RMSrel b
log x

1�x

� �

entrEEG, entrEMG, entrEOG, prctile75EEG,

prctile75EMG, prctile75EOG, stdEEG, stdEMG,

stdEOG, kurtEEG, kurtEMG, kurtEOG

log(1 + x)

skewEEG, skewEMG, skewEOG –
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database was transformed using a non-linear transformation

[22].

Each night recording was processed as follows. Firstly, the

features were extracted from the recording using signal

processing techniques and transformed using an appropriate

function. The list of transformations that were applied to each

feature is presented in Table 2. They were chosen from [17].

After this transformation, each feature x was normalised in a

new variable z, using a z-score normalisation:

z ¼ x� m

s
(10)

where m is the night recording mean value of the transformed

feature x and s is its standard deviation.

Each epoch is represented by a set of 26 features, which are

summarized in Table 3.

3. Feature selection methods

In this section, the methods used to select the most relevant

features are presented. Sequential methods were implemented,

increasing or decreasing the number of features to be used

according to the value of a criterion J. Though these methods

are not optimal, they were used because the results they provide

are easy to analyze.

Let f1, f2, . . ., fn be a set of n features to select. Let F be a

subset of these n features and F̄ be the subset of features that are

not in F :

F [ F̄ ¼ f f 1; f 2; . . . ; f ng; F \ F̄ ¼ ?

Let J be a criterion to be maximised and J(F), the criterion J

that is calculated with the features contained in the subset F.

The sequential selection is an iterative technique which selects

at each step i the subset Fi of features that maximises J.
Table 3

The set of features used in the study to characterize an epoch

EEG signal Prel d, Prel u, Prel a, Prel s, Prel b

RMSrel d, RMSrel u, RMSrel a, RMSrel s, RMSrel b

entrEEG, prctile75EEG, stdEEG, skewEEG, kurtEEG

EMG signal entrEMG, prctile75EMG, stdEMG, skewEMG, kurtEMG

Prel high

EOG signal entrEOG, prctile75EOG, stdEOG, skewEOG, kurtEOG
3.1. Sequential forward selection (SFS)

The method consists in increasing at each step i the number

of features contained in Fi�1 by one. Let Fi�1 be the subset of

features selected at step i � 1, that maximises J(Fi�1). Fi�1

contains i � 1 features, which were previously selected. F̄i�1

contains the n � i + 1 features still to be selected. At step i, a

new feature f i is selected out of F̄i�1 as JðFi�1� f iÞ ¼
maxðJðFi�1� f kÞÞ with f k 2 F̄i�1.

The first subset is initialised to the empty set F0 ¼ f?g.

3.2. Sequential backward selection (SBS)

It consists in decreasing at each step i the number of features

contained in Fi�1 by one. Let Fi�1 be the subset of features

selected at step i � 1, that maximises J(Fi�1). Fi�1 contains

n � i + 1 features, which were previously selected. F̄i�1 contains

the i � 1 features that were rejected. At step i, a new feature fi is

rejected out of Fi�1 as J(Fi�1 � fi) = max(J(Fi�1 � fk)) with

fk 2 Fi�1. The first subset is initialised to the subset containing all

the features, F0 = {f1, f2, . . ., fn}.

3.3. Criterion

In this study, the criterion J to be maximised is a function of

the percentage of epochs correctly classified by a classifier C.

As presented in Section 2, the database S was split into 10

subsets, S = {S1, S2, . . ., S10}. Each subset Sk contains 1000

epochs. Each of the five classes to recognise is equally

represented in Sk. A classifier C is trained on one subset Sk

and validated on the nine other subsets Sk̄, Sk̄ 2 S̄k with

S̄k ¼ S� Sk.

An accuracy function is calculated on each of the nine

subsets Sk̄ as

Accðk; k̄Þ ¼
card½fepðiÞ 2 Sk̄=CðepðiÞÞ � EðepðiÞÞ ¼ 0g�

card½Sk̄�
(11)

where ep(i) is an epoch belonging to Sk̄, C(ep(i)) the class

assigned to epoch(i) by the classifier C, trained on the subset k.

E(ep(i)) is the class assigned by the experts to ep(i).

A circular permutation is performed on the 10 subsets Sk.

The classifier is trained 10 times using the different data sets Sk.

Thus, 90 values of Accðk; k̄Þ are obtained. The criterion J used

to select the features is

J ¼ 1

10

X10

k¼1

1

9

X10

j¼1

j 6¼ k

Accðk; jÞ

0
BBBB@

1
CCCCA (12)

J(Fi) is the value of criterion J defined by (11) and (12) using

the features contained in the feature subset Fi. In Eq. (12), the

term in brackets corresponds to the mean accuracy obtained on

the nine validation sets, when the classifier C is trained on one

training set. J corresponds to the mean accuracy obtained on the
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validation sets, when the classifier C is trained 10 times with 10

different training sets. Computing J this way ensures that the

accuracy obtained is insensitive to the training set used. The

standard deviation of the accuracy Acc obtained using classifier

C is computed with:

stdAcc ¼
1

89

X10

k¼1

X10

j¼1

j 6¼ k

ðAccðk; jÞ � JÞ2

0
BBBB@

1
CCCCA

2
66664

3
77775

1=2

(13)

Actually, stdAcc is an indicator of the dispersion of the accura-

cies. It can be used to determine if the accuracies obtained using

different features are statistically different.

3.4. Classifiers

To ensure that the results obtained are independent of the

classifier used, the features selection methods were processed

with three different classifiers, each of them calculating the

frontiers of each class in a different way [23,24]:
� T
wo Bayes rule-based classifiers:

� A parametric one, the quadratic classifier, where the

probability density function of each class is assumed to be a

multidimensional Gaussian model, the mean and covar-

iance matrix being estimated for each class from the

training set.

� A non-parametric one (no prior assumptions are made on

the probability density functions), the k-nearest neighbours

classifier, where the probability density function is

estimated with the volume occupied by a fixed number

of neighbours. Ten nearest neighbours were used.
� A
Table 4

Classification accuracies obtained with Wavelet and Fourier transform—mean

values and standard deviations

% Classification accuracy

Fourier transform Wavelet transform

Quadratic 69.91 � 1.73 67.58 � 1.34

Neural network 71.56 � 1.46 68.85 � 1.23

k-NN 67.83 � 1.57 63.49 � 1.44
multi-layer perceptron (MLP), where the frontiers of each

class are directly calculated from the training set. A neural

network with three layers was implemented as an automatic

classifier. The architecture of the neural network was

chosen from [17], the transfer functions being adjusted

using a trial and error method. The number of neurons in the

first layer is defined by the number of input features

extracted from the epoch to be processed. The transfer

function of the neurons in this layer is a hyperbolic tangent

function. The hidden layer of the network contains six

neurons; the transfer function is a logarithmic sigmoid

function. The output layer of the network consists of five

neurons; the transfer function of each neuron is a hyperbolic

tangent. The number of neurons in the output layer is

determined by the number of target sleep/wake stages to be

classified. The neural network is trained using feedforward

backpropagation gradient algorithm. The weights repre-

senting connections between the neurons were randomly

initiated at the beginning of the learning phase. The network

was trained 10 times with 10 different random initialisation

sets and the best network was kept, so as to avoid being

trapped in a local minimum during the training phase and

not reach the global minimum.
4. Results

The results obtained by the data mining methods are

presented in this section. Only the C3-A2 EEG channel was

used to obtain the results that are presented below. Actually,

tests were performed using each of the four EEG channels but

the results showed that no EEG channel outperforms the others.

The mean accuracies obtained using criterion J, defined in

Eq. (12), were not statically different, whatever the channel

used.

4.1. Comparison of Fourier and Wavelet transform

The ability of Wavelet transform compared to Fourier

analysis to process EEG signals was first analyzed. To do so,

only the features describing EEG activity in different frequency

band, using the Fourier transform or the Wavelet transform

were used to train the classifiers. The classification accuracy

(12), and its standard deviation (13), obtained using only the

features {Prel d, Prel u, Prel a, Prel s, Prel b} extracted from the

Fourier transform (defined in Section 2.2) or using only the

features obtained by means of the Wavelet transform

{RMSrel d, RMSrel u, RMSrel a, RMSrel s, RMSrel b} (defined

in Section 2.2) are presented in Table 4.

The results are quite similar. Actually, the Wavelet transform

performs a decomposition of the signal over different frequency

bands and provides about the same information as the Fourier

transform. Nonetheless, whatever the classifier, Table 4 shows

that the accuracy is significantly higher (t-test; p < 0.01) when

the relative EEG powers are calculated using the Fourier

transform, the best results being obtained with a neural network

classifier (71.56 � 1.46%). As they are also longer to process,

Wavelet transform features were eliminated from further

analysis.

4.2. Selection of the most relevant features

The SFS and the SBS methods were both applied to the set of

features presented in Table 3. The features corresponding to

EEG signal processed by Wavelet transform (RMSrel EEG)

were removed from the set. The subset of features representing

relative power of EEG in the frequency bands obtained with the

Fourier transform was considered as a single feature

(Prel EEG). The selecting feature method could select Prel EEG

only, meaning that all the energies in the five bands were

selected.



Fig. 2. Selection of features by SFS performed by the neural network classifier.

Fig. 3. Selection of features by SBS performed by the neural network classifier.

Table 5

Confusion matrix obtained with the neural network classifier using the optimal

set of features

% Wake NREM I NREM II SWS PS

Wake 84.57 8.13 2.36 1.99 2.95

NREM I 8.47 64.56 6.74 0.50 19.73

NREM II 0.79 4.23 85.55 7.05 2.38

SWS 0.37 0.06 6.62 92.90 0.05

PS 2.33 22.30 2.38 0.18 72.81
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The results obtained using the SFS method with the neural

network classifier are shown in Fig. 2. The dots show the

classification accuracy (12), obtained at each step of the feature

selection process, the bars express the corresponding standard

deviation (13). The axis of abscissas shows the features selected

at each step. Steps where the addition of a feature generated a

significant increase in the percentage accuracy (t-test;

p < 0.01) are represented by a star. The most relevant feature

is the set expressing the EEG relative power in the five

frequency bands, which is able to correctly classify 71% of the

epochs. The accuracy is significantly increased (t-test;

p < 0.01) when the entropy of EMG, the entropy of EOG,

the kurtosis number of EOG, the 75th percentile of EEG and the

standard deviation of EOG are added (increase from

71.56 � 1.46% to 80.11 � 1.17%). Adding other features does

not significantly improve the classification accuracy. The

addition of some features, such as skewness numbers, can even

diminish it. The optimal set of features is then {(Prel d, Prel u,

Prel a, Prel s, Prel b), entrEMG, entrEOG, kurtEOG, prctile75EEG

and stdEOG}. The same set of optimal features was obtained

when J was calculated using the quadratic classifier or the k-

nearest neighbours classifier. Adding entrEMG, entrEOG,

kurtEOG, prctile75EEG and stdEOG increases the global

classification accuracy approximately of about 9% for each

classifier.

When applying the SBS method, the same features were

detected as relevant for the classification. The selection

procedure is shown in Fig. 3. It displays the value of the

criterion J at each step of the feature selection process, when

one feature is removed from the set. Steps where the removal of

a feature shows a significant accuracy decrease are represented

by a star. The removal of the first 11 features, from skewEMG to

Prel high EMG, does not significantly decrease the value of J.

Then, a significant decrease in the classification accuracy is

observed when Prel EEG, entrEMG, entrEOG, kurtEOG, prcti-

le75EEG and stdEOG are removed from the features set.

Table 5 presents the confusion matrix obtained when the

optimal set of features is used. The columns represent the stages

classified by the neural network classifier and the rows

represent the stages determined by the experts. Each case (i, j)
corresponds to the number of examples classified as i by both

experts and j by the classifier, expressed as a percentage of the

examples classified as i by the experts.

Table 5 shows that except for NREM stage I and PS, the

incorrect classifications occur between adjacent phases. For

example, errors on wakefulness classification are mainly due to

a wrong attribution to NREM stage I, which is the phase

normally succeeding wakefulness in a non-pathognomonic

sleep episode. This can be explained by the fuzzy boundaries

between two succeeding sleep stages due to the fact that sleep is

a dynamical process. Transitions between two successive stage

phases may occur during an epoch or may last longer than 20 s

period during which it is difficult for the expert to be certain of

his decision. Using data which expertise is the same by two

experts diminish the uncertainty area but does not fully

eliminate it.

On the contrary, NREM stage I and PS are difficult to be

discriminated, though they are not adjacent phases. Yet, Fig. 4

shows that their accuracies increased when adding features

extracted from EMG and EOG signals. Indeed, Fig. 4 displays

the percentage of correct classification for sleep/wake stages

(case(i, i) of the confusion matrix) obtained at each step of the

optimal feature selection process (SFS). It can be seen that

wakefulness, NREM stage II and SWS stages are correctly

classified using EEG spectral information (the accuracy is at

least 80%). The addition of new information processed from the

two other signals, EMG and EOG, improves the percentage

accuracy of these three phases by a few digits only. The increase

in the global percentage accuracy (from 71% to 80%) is mainly

due to the increased ability of the classifier to discriminate



Fig. 4. Classification accuracy of each sleep/wake stage obtained at each step of

SFS.

Fig. 5. Principal components analysis of EEG relative power features char-

acterizing stages NREM I and PS.
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NREM stage I from PS. These two phases are hardly

distinguishable by the EEG signal analyzed in the frequency

domain. Indeed, when only the EEG spectral information is

used, 45% of the NREM stage I epochs are classified into PS.

This percentage drops to 20% when the optimal features,

processed with EMG and EOG, are used while, at the same

time, the percentage of PS wrongly classified as NREM stage I

remains the same (about 20%). The percentage of NREM stage

I epochs that are correctly classified increases by 32%. The

NREM stage I classification accuracy is especially improved by

entrEMG, entrEOG and kurtEOG. The parameter entrEMG

improves the accuracy of the PS stage.

5. Discussion

The use of data mining methods enabled knowledge to be

extracted from the available database. The methods were

implemented in a particular way (different classifiers and

several training sets were used) to make it sure that the results

obtained were insensitive to the classification method used or to

the training set chosen.

Data were selected so that each class was equally represented

in the database. The classification accuracy J is then a fair

compromise between each class. The selection of features does

not favor one class to another one. This is a key point in this study.

Indeed, the feature selection procedure showed that wakefulness,

NREM stage II and SWS could be correctly classified using EEG

spectral information and that the improvement obtained by

adding the EOG and EMG signals was not so significant for these

stages. Table 1 shows the repartition of the data in the initial

database, which is similar to the time spent by a patient in the

different sleep/wake stages. About 50% of the night are spent in

NREM stage II, while only 3% are spent in NREM stage I. Using

a repartition of the data similar to a night sleep would have put a

very large weight on NREM stage II and a very small one on

NREM stage I, leading to the conclusion that EEG spectral

analysis is sufficient to correctly classify a night-time PSG

recording. Yet, since PSG is used to diagnose sleep disorders, all

sleep/wake stages are to be classified with equal accuracy.
The large amount of data used in this study, recorded on an

important number of healthy adults, ensures that the results are

not specific to one subject and that they could be extrapolated to

new subjects. These methods are data driven; no prior

knowledge is introduced in the decision process. Results can

then be confronted to the neurophysiologist’s point of view.

Results have shown that the EEG relative power spectrum is

the most discriminating feature to classify sleep stages, which is

common knowledge among neurophysiologists. It seems that

the Fourier transform is sufficient to extract relevant spectral

information from EEG. Processing the signal with the Wavelet

transform does not improve the classification accuracy. This

can be explained by the fact that the same information is

extracted by these two signal processing methods, with maybe a

higher sensitivity of the Wavelet transform to EEG artifacts.

The method showed that EOG and EMG signals are

especially important to discriminate PS phase from NREM

stage I, which is in agreement with the R&K rules. EEG

spectral information is not relevant to discriminate NREM

stage I epochs from PS epochs. When only this information is

used, many NREM stage I epochs are classified as PS epochs.

This is illustrated in Fig. 5 that shows the scatter of NREM stage

I and PS stage epochs of the database. The epochs, represented

by the relative energies in the five frequency bands, were

transformed using Principal Component Analysis, and each

point (epoch) was projected on the first two components plane.

PS and NREM stage I epochs cannot be separated, as it can be

seen in Fig. 5.

From the neurophysiologists’ point of view, EEG spectral

components are the same in both stages most probably because

both of them correspond to activated brain states, though their

answer is not very clear about this point. It seems that falling

asleep results from an active physiological process, which

might be disturbed under particular conditions like sleep onset

insomnia. Although not considered in the R&K sleep scoring

manual, NREM stage I has been called ‘‘Skipped REM’’ by

several authors who observed high frequency EEG activity

during this transitional stage.

From SFS, the first two features that increase the

classification accuracy, especially NREM stage I and PS

accuracies, are the EMG entropy and the EOG entropy. Entropy



L. Zoubek et al. / Biomedical Signal Processing and Control 2 (2007) 171–179178
is a measure of the signal variability: the more variant the

signal, the higher the entropy. The selection of the entropy as

the most discriminating feature is in agreement with the R&K

rules that proposed to discriminate NREM stage I from PS

using EMG as an index of muscular tone. During an episode of

PS, the patient’s skeletal muscles become atonic which is

characterized by a flat EMG signal and a low EMG entropy. On

the contrary, during NREM stage I, the patient’s EMG activity

is still elevated and reflected by a high entropy. The opposite

information is extracted from EOG entropy. PS phase is

characterized by rapid eye movements, which correspond to a

high entropy. These rapid eye movements are not observed

during the NREM stage I where the entropy is lower.

Fig. 6 shows a plot of NREM stage I and PS stages epochs of

the database in two dimensions: EMG entropy, EOG entropy

after transformation and normalisation. Though the two plots

are superimposed, it is easy to see that a certain number of

NREM stage I epochs can be distinguished from PS epochs,

which explain the increase of 25% in NREM stage I accuracy

without decreasing PS accuracy obtained with the SFS method,

when these two features are added.

The kurtosis number of EOG is the third feature to be

selected. Kurtosis is a measure of whether the distribution is

peaked or flat relative to the normal distribution. The kurtosis of

a signal measures the presence of irregular values, such as

transitory sharp variations in the signal. Sharp variations related

to the presence of rapid eyes movements (REMs) occur in the

EOG during PS stage, and explain why EOG kurtosis is higher

for some epochs of PS.

The 75th percentile provides some information about the

amplitude of the signal. Prctile75EEG provides an indication on

the amplitude level of electrical brain activity and can be useful

to discern relatively high amplitude activity during wakefulness

and SWS stages.

Finally, let us note that the skewness number of any of the

three PSG signals was irrelevant to discern the sleep stages. The

reason for this can come from the shape of the physiological

signals. The skewness number characterizes the degree of

asymmetry of a distribution around its mean value. The PSG

signals are more often than not symmetric, occasional signal

asymmetries are not specific of any sleep/wake stage.
Fig. 6. stages NREM I and PS in a two-dimensional plane: EMG entropy vs.

EOG entropy.
The use of two or three PSG signals requires the use of

additional sensors, which can increase the patient discomfort

during the recording. From this study, it is possible to conclude

that EOG and EMG signals must be recorded if the

discrimination of NREM stage I from PS is important for

the undergoing study or for patient diagnosis purpose. If not, it

may not be worth recording three signals, considering the small

gain in performance accuracy.

The real challenge in automatic sleep analysis is now to be

able to discriminate accurately NREM stage I from PS.

Physicians are able to do so using the three PSG signals, EEG,

EOG and EMG. Thus, a machine should be able to do so, if the

appropriate features are selected, which constitute the future

research. The three other stages – wakefulness, NREM stage II

and SWS – are already correctly classified. Their classification

accuracy is at least 85%. The errors occur on adjacent phases.

These errors are due to periods of transitions from one sleep

stage to another when it is difficult, even for a human expert, to

make a decision.

6. Conclusion

In this study, data mining methods were applied on a large

PSG recording database in order to select the most relevant

features for sleep/wake stage classification. Methods were

processed so as to be insensitive to the classifiers implemented

and to the training set used. The results show that an appropriate

selection of features improves the classification of sleep/wake

stages. Relative power in different EEG frequency bands

enables the correct classification of about 71% of the analyzed

epoch. Adding the entropy of EMG, the entropy of EOG, the

kurtosis of EOG, the 75th percentile of EEG and the standard

deviation of EOG improves the classification accuracy by about

9%. These results are in agreement with the R&K rules, which

are a standard for human sleep classification.

Future work should be oriented towards an improvement in

discrimination of NREM stage I and paradoxical sleep. Indeed,

the classification accuracy of these two stages is lower

compared to the other sleep stages.
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