
8

Comparison Between Five Classifiers
for Automatic Scoring
of Human Sleep Recordings

Guillaume Becq1, Sylvie Charbonnier2, Florian Chapotot1, Alain Buguet4, and
Lionel Bourdon1 and Pierre Baconnier3

1 Centre de Recherches du Service de Santé des Armées, 24 Avenue des Maquis du
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Abstract. The aim of this work is to compare the performances of 5 classifiers
(linear and quadratic classifiers, k nearest neighbors, Parzen kernels and neural
network) to score a set of 8 biological features extracted from EEG and EMG, in
six classes corresponding to different sleep stages as to automatically elaborate an
hypnogram and help the physician diagnosticate sleep disorders. The data base is
composed of 17265 epochs of 20 s recorded from 4 patients. Each epoch has been
classified by an expert into one of the six sleep stages. In order to evaluate the
classifiers, learning and testing sets of fixed size are randomly drawn and are used to
train and test the classifiers. After several trials, an estimation of the misclassification
percentage and its variability is obtained (optimistically and pessimistically). Data
transformations toward normal distribution are explored as an approach to deal
with extreme values. It is shown that these transformations improve significantly
the results of the classifiers based on data proximity.

Key words: Bayesian Classifiers, Error Estimation, Neural Networks, Normaliza-
tion, Polysomnography, Representation, Sleep Staging

8.1 Introduction

In biology, taxonomy has been the source of numerous studies and still remains
one of the predominant fields of research (genome studies). The development of
multidimensional exploratory analyses, computing power and numerical solutions
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Fig. 8.1. A human hypnogram. Sleep-wake stage scoring has been realized by an
expert into 6 different sleep stages from 22 h 30 min to 06 h 30min over epochs of 20 s:
0-Wake and Movement Time, 1-stage 1 (transition from waking to sleeping), 2-stage
2, 3-stage 3, 4-stage 4 (stage 2, 3 and 4 are part of the orthodox sleep with more
and more slow waves observed on the recording), REM–Rapid Eye Movement (or
paradoxical) sleep (with rapid brain activity with or without rapid eye movements
and muscle atonia)

can explain the growth of such studies. However, in the case of time series, one notices
that relative few works have been developed to deal with clustering or classification
techniques. One interesting source of such studies is the study of sleep, where several
classification techniques have been tested to determine structures on real temporal
data [24, 27].

The starting point of sleep studies has been the observation of the electrical
activity of the brain measured by electrodes fixed on the scalp, during all night
recordings. First observations showed that several patterns were similar from one
individual to another, their distributions fluctuating throughout the night. Origi-
nally (about 1940) [20, 21], analog signals were plotted on pages of paper. At that
time, sleep recordings consisted of huge blocks of paper. With the first discoveries
and the evidence of different phases of electroencephalic activity during the night
[2, 6, 7, 15], several techniques for electrodes placement were applied and various
practices for classifying these activities sprang up. In order to extract the different
patterns of such recordings, one expert was assigned to read signals page by page,
and give a score corresponding to specific processes of the sleep activity of the brain.
The result of this reading has been called an hypnogram and consists in a succession
of stages through the night (see Fig. 8.1).

The advantages of working with hypnograms are: an extraction of information
from raw data generated by polysomnographic (PSG: multi-channel sleep) record-
ings, an easier interpretation of the architecture of the night and a better vision of
the organization of long term biological processes. It is then easier to discriminate
strange charts from normal ones. Therefore, the hypnogram becomes a powerful
tool for the diagnosis of sleep pathologies. Besides, the hypnogram, as a summary of
the night, considerably reduces the storage of data and allows different laboratories
to exchange results and share their knowledge. For that reason, a consensus for a
standardization of the rules used to score PSG recordings was held in 1968, bringing
together the different leaders in electroencephalography. It led to the creation of the
manual by Rechtschaffen and Kales (R&K) [25] currently applied in the different
sleep laboratories where pathologies, sleep disorders and untypical hypnograms are
studied.
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Since 1970, and the growth of computerized methods, interests have been ini-
tiated in order to score automatically polysomnographic recordings [11, 29, 30],
allowing the expert to avoid spending too much time on this time-consuming work.
But studies are still in progress and improvements have to be made. For a complete
review of the history of sleep, the reader is referred to [14] where the author, speak-
ing about automatic sleep staging, notes: “The task turned out to be much more
difficult because of ambiguities, artifacts and variations in human scoring”.

This study has been developed in order to understand the different difficulties
encountered with real biological data, while comparing expert practices and machine
learning algorithms. For that purpose, a comparative study of five classifiers for au-
tomatic analysis of human sleep recordings is presented where temporal data coming
from different individuals are mixed together. The interest of transformations toward
normal distribution is emphasized since they lead to homogeneous representations
for the different selected features. In the first paragraph, the database, the different
classifiers, the method chosen to evaluate the performances of the classifiers and the
transformations toward normal distribution are presented. In the second paragraph,
the results obtained are discussed.

8.2 Materials and Methods

8.2.1 Presentation of the Database

The study has been realized over N = 11 polysomnographic recordings available
in our database (from 4 healthy subjects). Features were extracted from one EEG
(electro-encephalogram, differential lead C3–A2) and one bipolar EMG (electromyo-
gram, position chin), sampled at 200Hz. The choice of these features has been made
in accord with experts in an effort to test a minimal set of electrodes considered
necessary for the scoring of sleep.

Eight features thought to represent important physiological processes calculated
over epochs of 20 s have been considered and are reported in Table 8.1, where σ
denotes the standard deviation and Prel the relative power in a given frequency band.
The different bands are: δ (0.5–4.5 Hz), θ (4.5–8.5 Hz), α (8.5–11.5 Hz), σ (11.5–
15.5 Hz), β (15.5–22.0 Hz), γ (22.0–45.0 Hz) and corresponds to the ones generally
employed in sleep and waking EEG spectral studies [3].

During these epochs of fixed temporal intervals (∆t = 20 s), EEG can be con-
sidered approximately stationary [22]. This assumption is fundamental for the esti-
mation of the different retained features, both in time domain and in the spectral
domain. In each epoch, a score has been attributed by an expert. This score is as-
signed from a set constituted of K = 6 classes representing the 6 different stages
encountered during human sleep defined in regards with the conventional criteria of
R&K [25]: 0-Wake and Movement Time, 1-stage 1, 2-stage 2, 3-stage 3, 4-stage 4,
5-Rapid Eye Movement sleep (or Paradoxical sleep). The different aspects of EEG
and EMG signals are represented Fig. 8.2, in order to appreciate the variations of
the different signals throughout human sleep.

Once all the signals have been segmented into epochs, preprocessed and their
features extracted, we can represent any observation x by a state representation in
an Rd space (d = 8 for our study) where (.)t denotes the transpose of the vector:
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Table 8.1. Description of the features used in the study and their statistical values
for a) raw data, b) with z-score normalisation and c) with transformations toward
normal distribution

a) b) c)

Feature µ σ min max min max Transform. min max

F1 σ(EEG) 16.87 13.67 4.69 227.31 −0.89 15.40 log(1 + x) −1.97 5.38
F2 Prel(EEG, δ) 0.69 0.16 0.01 0.99 −4.27 1.88 arcsin(

√
x) −4.94 2.58

F3 Prel(EEG, θ) 0.14 0.07 0.00 0.68 −1.92 7.46 arcsin(
√

x) −2.93 5.60
F4 Prel(EEG, α) 0.05 0.04 0.00 0.46 −1.34 10.65 log( x

1−x
) −4.91 2.95

F5 Prel(EEG, σ) 0.05 0.04 0.00 0.50 −1.20 11.54 log( x
1−x

) −4.53 2.87

F6 Prel(EEG, β) 0.04 0.04 0.00 0.94 −0.93 23.31 log( x
1−x

) −3.62 2.95

F7 Prel(EEG, γ) 0.06 0.10 0.00 1.35 −0.59 13.44 log( x
1−x

) −2.95 2.45

F8 σ(EMG) 21.42 39.54 0.00 394.97 −0.54 9.45 log(1 + x) −2.10 3.25

x = (F1, F2, . . . , Fd)
t (8.1)

When regrouping both the temporal instants and the different individuals, we obtain
an array of observations or statistical units [19] representing the database over which
the classification study is done:

M =





F1(t0(1)) F2(t0(1)) · · · Fd(t0(1)) C(t0(1))
· · · · · · · · · · · · · · ·

F1(tf (1)) F2(tf (1)) · · · Fd(tf (1)) C(tf (1))
...

...
...

F1(tk(i)) F2(tk(i)) · · · Fd(tk(i)) C(tk(i))
...

...
...

F1(t1(N)) F2(t1(N)) · · · Fd(t1(N)) C(t1(N))
· · · · · · · · · · · · · · ·

F1(tf (N)) F2(tf (N)) · · · Fd(tf (N)) C(tf (N))





(8.2)

where tk(i) = t0(i) + k∆t for individual i.
The database was then constituted of 17265 observations over 8 parameters

in which we introduced into the last column the expert’s classification. A visual
display of such a database is given in Fig. 8.3, with features transformed into normal
distribution (detailed in 8.2.4) for a better homogeneity of representation.

8.2.2 Learning and Testing Sets

In machine learning, the supervised learning approach tries to learn rules, statistics,
mathematical models, with a computer, from a desired result. A database containing
both the different features used to solve the problem and the corresponding desired
results are used. The aim is to find the model that minimizes a criteria which is
a function of the difference between the results calculated by the machine and the
desired results.

For this reason, it is common to separate the database into 2 sets: the first is
used to induce the machine in a so called learning (or training) phase; the second
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a) Stage 0: Waking and Movement Times, noisy signals.

b) Stage 2: Apparition of short bursting events and slow waves

c) Stage 3–4: Large slow waves.

1 s

20
0
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d) Stage 5: Rhythmic θ activity and flat EMG.

Fig. 8.2. Electrophysiological behaviour during principal sleep stages. Each figure
represents an epoch of 20 s. The same scale has been used for all figures

is used during a phase of validation (or test) for evaluating the performance with
data that has not been used during the learning process. For a review of the different
techniques for evaluating and preparing the data into learning set (LSet) and testing
set (TSet) the reader is referred to [9, 10, 17].

Leave one out (N-1 vectors for learning and 1 vector for testing) or classical
cross-validation (N/2 vectors for learning, and N/2 vectors for testing), can not be
applied when working with a large database, such as ours, without huge computation
times. We decided to randomly select a fixed number of data for the learning set and
for the testing set, as is done in bootstrap techniques. The learning set will serve
to train the classifiers, but also to calculate an optimist estimation (resubstitution
techniques, empirical error) of the convergence of them. The testing set is used to
obtain a pessimist estimation (cross validation techniques, real error) of them.
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Fig. 8.3. Representation of 5000 elements of the database after transformation.
Time and individuals are grouped together. When data is homogeneous, the in-
fluence of each feature is directly observable over the classification of the expert
represented at the top of the figure

The difference with bootstrap techniques is that we do not reset the drawings
after each drawing. This is done in order to obtain independence between estimation
from the learning set and estimation from the testing set.

The choice of the number of data for the learning and testing sets can be obtained
by looking over the stability of the performances of the classifiers. For a given size of
the learning and testing sets, we trained a kNN classifier and a Parzen estimator. An
estimation of the performance was realized over 30 subsets for both the optimistic
and pessimistic error that are represented given with their standard deviation in
Fig. 8.4. Classification errors reach ≈ 30% and do not improve when the number of
data in the sets increase over 500 samples when using both the kNN classifier or the
Parzen estimator.

8.2.3 The Different Classifiers

Five common classifiers have been evaluated that can be regrouped into two distinct
categories: the first category corresponds to the set of classifiers using probabilistic
computations based upon the Bayes’ rule to assign a class to a feature vector. The
second category corresponds to classifiers delimiting regions into the representation
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Fig. 8.4. Misclassification percentage in function of the size of the samples drawn
from the database using the kNN classifier with k = 10 or the Parzen estimator with
α = 0.5. After 500 samples in the learning set and 500 samples in the testing set,
performances are not improved

space by direct computation of frontiers. Explanation of the behavior of the different
classifiers and the learning hypothesis can be found in [1, 5, 8]. Here we provide a
short description of them.

Our study learning problem is to induce a classifier able to assign to a vector x of
the representation space, a class C ∈ {ωi}K

i=1 with respect to the knowledge database
constituted of the data present in the learning set. We use the following notation: P
for the probability, p the probability density, E[.] the expectation operator, |.| the
determinant.

Bayes Rule-based Classifiers

The attribution of a vector x to a class is made using the Bayes’ rule (8.3). The
posterior conditional probability P (ωi|x) is calculated for each of the K classes and
the vector is given the class ωi for which P (ωi|x) is maximal (maximum a posteriori).

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
(8.3)

p(x) =
K∑

i=1

p(x|ωi)P (ωi) (8.4)

The learning problem consists in estimating the conditional density function p(x|ωi)
from the different samples of the learning set. The different classifiers depend on the
hypotheses made on this density function.
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Parametric Models

The probability density function is assumed to be a multidimensional Gaussian
model.

p(x|ωi) =
1

(
√

2π)d
√

|Σ|
exp

(
−1

2
(x − µ)tΣ−1(x − µ)

)
(8.5)

Its parameters (mean µ and covariance matrices Σ) are estimated with samples
drawn from the learning set:

µ = E[x] = (µ1, µ2, . . . , µd)t (8.6)

Σ = E[(x − µ)(x − µ)t] (8.7)

Linear classifier: the covariance matrix Σ = Σi is assumed to be the same for all
classes. The resulting boundaries delimiting the classes are linear functions.

Quadratic classifier: the covariance matrix Σi is assumed to be different for each
class and is estimated with representatives of each class in the learning set. The
resulting boundaries delimiting the classes are quadratic functions.

Non-Parametric Models

The density function is described with

p(x|ωi) =
kni

niVni

(8.8)

with ni number of representatives of class ωi in the volume Vni .

k Nearest Neighbor (kNN) classifier: the probability density function is estimated
by the volume occupied by a fixed number of neighbors (search of Vn with
fixed kn). It is simple to show that the decision obtained with the Bayes’ rule
maximization is equivalent to a voting kNN procedure. This procedure is a
majority vote over the classes of the k nearest neighbors (present in the learning
set) of the feature vector to classify.

Parzen estimator with Gaussian kernels: The probability density function is esti-
mated by the sum of density kernels given a fixed volume Vn. To each sample
xi,j representative of class ωi in the learning set, a density kernel K(.) is asso-
ciated. The sum over j of these ni kernels gives the density of that class in that
region and the probability density function is then

p(x|ωi) =
1

niVni

ni∑

j=1

K

(
x − xi,j

hni

)
(8.9)

with

Vni = hni

d = ni
−α (8.10)

and the Gaussian kernel

K(u) =
1

(
√

2π)d
exp

(
−1

2
(u2)

)
(8.11)

These two methods require the tuning of a parameter: k, the number of neighbors
for the k nearest neighbor estimator and α, for the Parzen estimator. The number
of neighbors has been chosen to equal 10 and the parameter α has been set to 0.5,
after evaluating the performance of the classifiers when incrementing the values of
these parameters, as shown in Fig. 8.5.
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Fig. 8.5. Selection of the parameters for the k Nearest Neighbor classifier and for
the Parzen estimator with Gaussian kernels. Size of the learning set and size of the
test set have been set to nLSet = 500 and nTSet = 500. We retained k = 10 and
α = 0.5 for the comparison of the classifier because there is no improvement of the
pessimistic error with greater values

Frontiers Based Classifiers

The frontiers of the classes in the multidimensional space are directly calculated
from the data present in the learning set:

A multi layer perceptron (MLP): with 3 layers fully connected composed with 8
neurons in the input layer (hyperbolic tangent transfer function y = 2/(1 +
exp (−2x)) − 1), 6 neurons in the hidden layer (linear transfer function y =
x) and 6 in the output layer (logarithmic sigmoid transfer function y =
1/(1 + exp (−x))), trained by the feedforward backpropagation gradient algo-
rithm. Weights were initiated randomly at the beginning of the learning phase.
This structure is often used in discrimination [31] with an input layer connected
to the representation space of x with d = 8 and the output layer connected to
the desired class with K = 6. The choice of the number of neurons in the hidden
layer has not been optimized in this study.

8.2.4 Transformations Towards Normal Distribution

Means, standard deviations, maximal and minimal values for the different retained
features are given in Table 8.1. Inhomogeneity in raw data can be observed, as well
as a wide spread of the data, which is typical with biological data. For example,
even after doing a z-score defined by the transformation z = (x − µ)/(σ) (where µ
is the mean of x and σ is its standard deviation), the maximal value of the sixth
parameter is twenty three times the standard deviation.

In order to reduce the influence of extreme values, we applied transformations
towards normal distribution on the whole set of the data, and for each parame-
ter. These transformations are either log (x), log (1 + x),

√
x, 3

√
x, log ((x)/(1 − x)),

1/(
√

x), arcsin (
√

x) depending on their effect over the different features. This was
introduced by Theo Gasser [12] for normalization of EEG spectral parameters. These
transformations perform more effectively, better than doing the simple z-score: the
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Fig. 8.6a. Effect of the transforma-
tions for Prel(EEG, β) plotted in a log-
normal axis system, known as Henry
plot (normal probability plot). The
log( x

1−x
) transformation gives a bet-

ter approximation to a normal distrib-
ution represented by a line than a sim-
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Fig. 8.6b. Effect of the transforma-
tion for Prel(EEG, β) over the distri-
bution of the data as compared to z-
scored data and data obtained from
Gaussian distributions simulated with
the same number of realisations

inter-individual variability is reduced with the advantage to reduce tails in distrib-
utions. The effects of these transformations can be seen in Table 8.1. The maximal
value of the eight parameters after transformation is no more than 6 times the stan-
dard deviation. An example of such transformations over one feature can be seen in
the Henry plot shown in Fig. 8.6a or from the density plot in Fig. 8.6b.

8.3 Results

A training set and a validation set, each made up of 500 vectors randomly chosen,
was built. Each classifier was trained on the first set and applied on the validation
set. The performance of the classifier is given by the classification error expressed in
percentage on the training set (which is optimistic) and on the validation set (which
is pessimistic). This procedure was achieved ten times, which provides two times
ten values for each classifier and enables the estimation of mean and variance. The
results from one classifier to the other is said to be different if means are statistically
different.

8.3.1 Results with Raw Data

Results from raw data are presented in Fig. 8.7a. These correspond to the mean value
of the classification error on the training set and on the validation set obtained
over 10 trials. For MLP, at each trial, 10 classifiers were trained with a different
initialization of the weights, and the network with the minimal classification error
was selected, in order to ensure the convergence of the network.
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Fig. 8.7a. Means and standard devia-
tions for the misclassification percent-
age obtained by 10 classifiers of each
type on raw data: a) linear discrimi-
nation, b) quadratic discrimination, c)
kNN with k = 10, d) Parzen estima-
tor, with Gaussian kernel and e) Best
MLP retained on each trial

Fig. 8.7b. same as Fig. 8.7a with
Transformed Data. All classifiers have
improved their results (in terms of pes-
simistic error), except the neural net-
work which obtains the same results

In Fig. 8.7a, the small standard deviation of the results tends to prove that the
technique we use for the evaluation is appropriate. The best result is obtained with
the neural network with 29 ± 1% of misclassification error on the validation set.
It is significantly different from others (p < 0.01, using a Wilcoxon sign rank test
for paired samples). Their results vary from 53 ± 2% for the Parzen estimator to
42 ± 3% for the quadratic classifier.

The large difference between optimistic and pessimistic estimation of the per-
centage for Parzen estimator (classifier d) (p < 0.01 Wilcoxon sign rank test for
paired samples) shows that the error on the training set can definitely not be used
to evaluate the performance of a classifier. Indeed, using this classifier, the vector
from the training set participates too much in the decision for its classification. The
high percentages obtained for optimistic estimation for the classifiers a) b) and c)
shows that those classifiers do not perform well on the data. This can be explained
by the large tails in the distribution and by the fact that the density probability
functions of the classes cannot be fitted correctly by a multidimensional Gaussian
model.

8.3.2 Results with Transformed Data

Results from data with transformations are presented in Fig. 8.7b. The transforma-
tions applied to the variables are given in Table 8.1. Classifiers were trained with
new coordinates obtained after these transformations.

All classifiers increased their performances (p < 0.01, Wilcoxon rank sum test
for independent samples) except the neural network which obtains the same re-
sults. The performance of the k nearest neighbor classifier and the Parzen classifier
have been significantly improved. The pessimistic error decreases from 45± 2% to
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28± 2% for the k nearest neighbor classifier and from 53± 2% to 32± 2% with the
Parzen estimator. The results obtained by the k nearest neighbor classifier are then
equivalent to the results obtained with the neural network. The results of the linear
and quadratic classifiers are slightly better with the transformed data. The misclas-
sification error decreased from 44± 3% to 37± 2% with the linear classifier and from
42± 3% to 36± 3% with the quadratic classifier.

These results can be explained by the fact that the neural network is not sensitive
to the distributions of the data; transformations have no effect on its ability to
separate space into subspaces [26]. But, the effect of the transformation leads to an
improvement of the speed of convergence for the optimization of the backpropagation
during the learning process explained by a better homogeneity in the distribution
of the weights and features in the input layer.

On the contrary, both the Parzen estimator and the k nearest neighbor estimator
use the concept of data proximity to classify a new vector. They are then penalized
by extreme values. When the extreme values are moved closer by transformation,
their performances equal those of the neural network. The linear and the quadratic
classifier make an assumption on the shape of the classes which is still not completely
verified even after data transformation.

8.4 Discussion

Disagreements between human scorers are known to vary from 10% to 20% [28].
The results obtained by these classifiers do not enter this interval, but they are not
very far from them. Besides, this study enables us to compare different techniques
of classification.

The advantage of the neural network is that it does not require any data transfor-
mation. The results obtained are the same with the raw data or with the transformed
data. The neural network can deal with a non-Gaussian probability density function
and with extreme values. However, the selection of the best neural network and the
optimization of the structure of the layers are not easy tasks and can be time con-
suming. Though the results obtained by the nearest neighbor classifier applied to
homogeneous data are the best, this method requires storing a large amount of learn-
ing vectors in memory. This can make its application difficult in practice. The main
advantage of classical statistical techniques (linear and quadratic discrimination) is
that the algorithms are fast.

Why do results not enter the inherent interval of disagreement between scorers?
One answer is that the hypothesis of the independence of the temporal epochs is not
completely true because when experts score a recording, they intrinsically know the
preceding page and score the new one in consequence. A way to take into account
this temporal causality is to add new columns in the database corresponding to the
preceding data of the parameters (switching from a state representation to a phase
one). Another way is to introduce an inference table at the end of the classification
process allowing certain transitions or rejecting others.

Another answer is that the parameters retained are not as discriminative as the
ones chosen visually by an expert. This is a problem which is generally encountered
in automatic classification as a means to replace a human classifier. Moreover, the
classifiers were trained to classify data recorded on different subjects. They had to
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deal not only with temporal dependence of the data as discussed before, but also
with inter-individual variability. In our study, we have constructed and evaluated
classifiers with no adaptation to one particular individual.

Experts are not so strict and often adapt their mind to fit the problem, but
classifiers are built to fit optimized mathematical models from a learning database.
The solutions proposed by these models can sometimes show the limits of the visual
technique of human scoring and can be a way to refine expert knowledge.

For example, one visual interesting dilemna in the R&K manual is when a tran-
sition occured during an epoch from one stage to another: the rule is to assign the
class to the predominant stage, i.e. the stage that lasts more than fifty percent of
the epoch. When there are a lot of transitions, this results in many problems for
the scorer and a lower productivity. This also raises doubt over the stationary hy-
potheses for the computing of temporal or spectral parameters. For more accurate
precision, one can use recent segmentation techniques for temporal time series, where
signals are segmented into non overlapping windows of variable lengths with respect
to different criteria [4, 16, 18, 23]. But then, the estimation of the performance of
the classifiers is not so easy.

Nowadays, R&K scoring proves its usefulness every day, but its limits are more
and more admitted [13].

8.5 Conclusion

We have evaluated and compared the performance of five classifiers to automatically
score polysomnographic data from various individuals into the six R&K sleep-wake
stages. Though the results obtained (the misclassification percentage is about 30%)
are not as good as the results obtained with the human scorers (the misclassification
percentage is less than 20%), the results are interesting considering the amount of
work human scoring requires. Automatic scoring may lighten the doctor’s burden.

We showed that extreme values, frequently present in biological data, were a
problem for all the evaluated classifiers, except for the neural network. To apply
a transformation toward normal distribution appeared to be an interesting way to
improve the performance of the classifiers. Both the neural network and the k nearest
neighbor algorithm using transformed data gave good results. However, considering
the information required to implement the two methods, we would recommend the
use of the neural network.
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