

In human and animal, artificial neural networks have shown satisfying performance as compared to human experts in sleep-wake stage scoring analysis of polysomnographic (PSG) recordings (1-2). To date, the few available analysis systems cannot be used with any recordings because they have been developped using fixed parameters. These parameters consists in the number, type (EEG \pm EMG \pm EOG) and sampling rate of signals required, the recording device and digital file format used for data storage, as well as the number of sleep-wake stages to be determined.

A new software system for off-line polygraphic reviewing and analysis (3; **PRANA**, *PhiTools, Strasbourg, France*) has been developed under MATLAB (*The MathWorks, Natik, USA*). This environment, which supports virtually any recording systems, serves as a basis for developping and testing new analysis and detection algorithms since it allows incorporating user software plug-ins. By doing so we have developped an automatic sleepwake stage scoring analyser allowing to configure, learn and simulate artificial neural network classifiers. In its original version this automatic analyser software plug-in showed a globall agreement of 74 \pm 7 and 80 \pm 1% in scoring healthy human and rat recordings, respectively (4).

Settings interface of the PRANA software automatic sleep-wake stage scoring plug-in.

Scoring interface of the PRANA software automatic sleep-wake stage scoring plug-in.

Objective: The aim of this study was to optimise the **PRANA** software automatic analyser plug-in for healthy human sleepwake recordings and to compare its performance to that of another commercially available system (**BioSleep** v3.0 Oxford *BioSignals, Oxford, Royaume-Uni*). The parameters taken into account in the optimisation process were the use of a consensual multi-individual learning database, on one hand, and the introduction during simulation of a contextual dependency, on another hand.

Material & Methods: Nocturnal PSG recordings performed in 13 young adult healthy volunteers were interpreted independently by two experts (ES and AB) according to the standard R&K criteria (5), then submitted to automatic analysis by the two compared systems. Global and intra-class agreement (specificity) and error (sensibility) between experts and automatic systems were determined and evaluated using Cohen's kappa statistics (6).

Results: Comparison of the two systems against the experts indicate better performances for the **PRANA** system than for **BioSleep** (global agreement of 79.5±6.3 *versus* 46.2±8.7%). Intra-class agreements and errors are represented in the accompanying figure.

Scoring comparison interface of the PRANA software automatic sleepwake stage scoring plug-in.

Intra-class agreement and error (mean±SEM) of two automatic anlysis systems (PRANA and BioSleep) compared to the analysis of two experts.

Conclusion: A global perfomance of the **PRANA** system just below inter-expert agreement (82.8±3.3%) suggest the use of the system at the sleep lab.

The **PRANA** software automatic sleep-wake stage scoring plug-in, by allowing to configure, learn and simulate various type of artificial neural network classifiers, may represent a convenient tool to speed up human and animal sleep research.

Since it allows incorporating user software plug-ins, the **PRANA** software system, which supports virtually any recording systems, may serve as a basis for developping and testing new analysis and detection algorithms.

References: (1) Schaltenbrand et al., Sleep 19(1):26-35, 1996. (2) Robert et al., J Neurosci Methods 79(2):187-93, 1998. (3) Tung and Oxenford, The MathWorks newsletter, Spring 2001. (4) Becq et al., 16^{ieme} Congrès de la SFRS, 2001. (5) Rechtschaffen and Kales, US Government Printing Office, 1968. (6) Cohen, Educ Psychol Meas 20:37-46, 1960.