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Abstract: This paper focuses on the development of an automatic system for sleep analysis. The system 

proposed in this paper combines two phases needed in sleep analysis. In a first step, an artefact detection 

system selects the polysomnographic signals (EEG, EOG, EMG) that are not corrupted by artefacts. In a 

second step, relevant features are extracted from the selected signals and classified using a neural network 

chosen among a bank of four neural networks. The four classifiers differ one from the others by the signals 

used for the classification. They were learnt using information provided by different combination of 

signals (EEG, EEG+EOG, EEG+EMG, EEG+EOG+EMG). Thus, the complete system enables the 

classification to be performed using relevant features computed from artefact-free signals, without losing 

too many data. The performance reached by the two-steps system is 85% of accuracy, calculated on 47 

night sleep recordings. 

 

1. INTRODUCTION 

Polysomnography is the basic diagnostic method used to 

analyze human sleep. Polysomnography consists in 

simultaneous monitoring of several physiological parameters 

during a whole night sleep. The standard polysomnographic 

signals are the electroencephalogram (EEG), the 

electrooculogram (EOG) and the electromyogram (EMG). A 

detailed analysis and an exact interpretation of a human 

whole night sleep enable the diagnosis of a wide spectrum of 

sleep disorders that are quite common in the human 

population. 

The analysis of polysomnographic recordings is divided into 

several successive phases. The whole process leads to the 

recognition of different sleep/wake stages defined in the 

conventional Rechtschaffen and Kales (R&K) human 

sleep/wake stage scoring manual (Rechtschaffen and Kales, 

1968). In general, six stages are recognized in human sleep. 

They are: wakefulness, non-rapid eye movement (NREM) 

sleep stages I, II, III and IV, and REM sleep or paradoxical 

sleep (PS). NREM stages III and IV represent the slow wave 

sleep (SWS) which is why they frequently form one united 

stage. When the polysomnographic recording is finally 

classified into the sleep/wake stages, it is possible to 

represent the sleep structure graphically by the means of a 

hypnogram. A hypnogram is an overall representation of the 

sleep architecture and presents the chronological distribution 

of the sleep/wake stages. 

The manual classification of polysomnographic recordings 

consists in analysing successively each 20-sec intervals of the 

signals recorded. The 20-sec intervals are called epochs. Each 

epoch is scored into one of the six sleep/wake stages 

according to some information visually extracted from the 

traces of the signals monitored within the current epoch. The 

manual classification is made by a physician. The physician 

must deal with artefacts or noise that can intermingle with the 

monitored signals. Artefacts are generated by phenomena 

which do not have any physiological basis, such as patient’s 

movements. Existence of artefacts in the physiological 

signals monitored can completely mask some information 

contained in the signal. 

The large expansion of computer technology in the last few 

decades has also influenced the medical science. A huge 

effort to fully automatize the whole process of sleep analysis 

has been made and automated sleep/wake stagers have 

emerged. An important number of publications characterizing 

the research in the area of automatic sleep analysis can be 

found (Robert, et al., 1998). Many of them focus on the 

choice for an adequate type of classifier, either classical 

algorithms or artificial intelligence methods such as artificial 

neural networks. However, few of them take into account the 

problem of artefacts. Actually, an automatic system should be 

able to correctly perform the two main steps: features 

extraction and accurate classification. The presence of 

artefacts can generate numerical errors in the features 

extracted which may lead to classification errors. 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 5227 10.3182/20080706-5-KR-1001.2964



 

 

     

 

The research presented in this paper focuses on the 

development of a classification system that takes into account 

the eventual presence of artefacts. An analysis of the quality 

of the signals is performed before using specific classifiers. 

The proposed system consists of two processing steps. The 

first step consists in detecting artefacts in the 

polysomnographic signals and selecting the signals that can 

be used for the classification. The second step consists of the 

classification of input features into sleep/wake stages, using 

one classifier selected among a bank of different classifiers. 

The classifiers differ one from the others by the input signals 

they use. The main idea of this paper is to use a different 

classifier for each epoch to be classified, depending on the 

quality of the three polysomnographic signals (EEG, EOG, 

EMG). 

The outline of the paper is the following. The automatic 

system proposed is presented in the second section. Both the 

processing levels are presented in detail. The whole 

polysomnographic database is presented in the third section. 

Then, final results are presented and discussed at the end of 

this paper. 

2. DESCRIPTION OF THE TWO-STEPS SYSTEM 

The automatic system of sleep staging must be able to 

perform different steps – to process artefacts, to extract useful 

features from each 20 sec epochs for all the three signals 

recorded (EEG, EOG and EMG) and to use them as inputs to 

the classifier. In this project, a complex automatic system that 

integrates these two steps was proposed.  

An automatic classifier is a decision system that is fed by a 

predefined set of features. When an artefact identification 

procedure is performed on the monitored signals separately 

from the classification task, it leads inevitably to a loss of 

data and thus to missing values in the input set of features, 

which is a problem most classifiers are unable to handle. In 

this project, a two-steps classification system is proposed as a 

solution to deal with missing values. The proposed system is 

able to combine the results of an artefact identification 

procedure with an adequate automatic classification using 

relevant features extracted from the available artefact-free 

signals. 

In a first step, the three signals (EEG, EOG and EMG) are 

checked to determine if any artefact is present in the epoch to 

be classified. If only a part of the epoch is artefacted, features 

are calculated using parts of the signal which are not 

artefacted. If too large part of a signal is artefacted during the 

epoch, the signal is removed from the classification system. 

Thus, the signals that can be used to classify the current 

epoch are selected. 

In the second step, these signals are used in the decision 

system: - the adequate features are extracted and used in a 

classifier. The decision system is composed of a bank of 

classifiers: four neural networks using different feature sets 

as inputs are learned and stored. The proper classifier is 

selected from the bank of classifiers, using the results of the 

artefact identification procedure performed on the EEG, EOG 

and EMG signals. The four neural networks use different 

inputs, extracted from different combination of signals: EEG 

only, EEG and EOG, EEG and EMG, EEG and EOG and 

EMG. When none of the signals are artefacted, the EEG-

EOG-EMG classifier is used. If EOG and/or EMG are 

missing, the corresponding classifier is used. Let us note that 

EEG is a crucial signal for sleep/wake staging. Thus, if EEG 

is missing, no classification can be performed. 

The structure of the automatic system is shown in figure Fig. 

1. Firstly, artefact identification is achieved and the current 

combination of artefact-free signals is determined. Then, the 

appropriate neural network classifier is selected from the 

bank of classifiers, the relevant features are extracted from 

the epoch and the epoch is scored. 
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Fig. 1 Scheme of the two-steps classification system 

2.1 Artefact identification strategy 

In this step, artefact detection methods are implemented to 

detect the parts of the signals which are artefacted. A review 

of artefact detection techniques can be found in (Anderer, et 

al., 1999). To reduce the number of data lost, the time 

resolution of the artefact identification algorithm was reduced 

from 20 sec to 2 sec. Each original 20-sec epoch was split 

into succession of ten 2-sec sequences and each 2-sec 

segment was checked to detect the occurrence of an artefact. 

A strategy was proposed to decide if the 20-sec epoch 

polluted by artefacts could be used for classification or not. If 

more than two 2-sec segments contain any kind of artefacts, 

then the entire corresponding 20-sec epoch was marked as 

“artefacted” and thus could not be used in the classification. 

On the contrary, if the number of artefacted segments is equal 

or less than two, the corresponding 20-sec epoch was marked 

as “artefact-free” meaning that it could be used in the 

subsequent analysis. However, the 2-sec segments 

contaminated with an artefact were removed from the epoch. 
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The specialized PRANA software was used to visualize the 

polysomnographic recordings and to perform a basic analysis 

of the signals. It is equipped with a universal automatic 

artefact detection algorithm, inspired by the work of Bruner 

(Brunner, et al., 1996). The algorithm can use either fixed or 

adaptive thresholds. The algorithm was tuned so as to 

identify the artefacts most frequently present in the 

polysomnographic signals, using physiological knowledge. In 

total, eight different artefacts were detected, six of them 

being detected using a priori fixed thresholds and two using 

adaptive thresholds. 

Overflow detection. An overflow artefact is detected if the 

absolute amplitude of the signal calculated during 2-sec 

segment is greater than a fixed threshold. 

Flat-line detection. A flat-line artefact is detected whenever 

the amplitude of the signal remains below a fixed threshold 

during a 2-sec segment.  

Loss of signal detection. A loss of signal artefact is detected 

whenever the amplitude of the signal is equal to zero during a 

given time.  

Power line artefact. It corresponds to interferences 

generated by the power line (50Hz). Such an artefact is 

detected whenever the amplitude of the band-passed signal 

(45-64 Hz) is above a fixed threshold. 

High-frequency artefact. It is detected whenever the 

spectral energy in the highest physiological frequency range 

(higher than 30 Hz) is above a fixed threshold. 

ECG artefact. An ECG artefact consists in a sharp peak 

similar to the original QRS complex of the 

electrocardiogram. The algorithm computes the ratio of two 

parameters computed from the first derivation of the signal. 

The first parameter is the peak-to-peak amplitude of the 

signal first derivation. Then, the 50
th
 percentile of the signal 

first derivation is calculated. The ratio is then compared with 

a fixed threshold. The detector can be also used to detect 

other sudden and unwanted sharp peaks in the signals. 

The last two detectors use an adaptive threshold. The 

threshold value is updated using the variance of the signal 

considered, estimated on a moving symmetric 60-sec time 

window.  

Low-frequency artefact. It is detected whenever the 

maximal amplitude of the filtered signal (0-2 Hz) is above an 

adaptive threshold.  

Muscular activity detection. A muscular activity artefact 

consists in a burst of (high amplitude) spikes in the signal 

trace. It is detected whenever the variance of the signal in [5-

64] Hz range is higher than an adaptive threshold.  

Information about artefacts were not available on the data 

base used in this study, ie artefacts were not visually marked 

by an expert. Thus, the tuning and performances of the 

artefact detectors could not be properly validated. Yet, it is 

obvious that the setting of the threshold values affects both 

the sensitivity and the specificity of the artefact detectors. 

 

2.2 Presentation of the classification system – bank of 

classifiers 

Four neural networks form the bank of classifiers used by the 

decision system. In the concrete, feedforward neural 

networks with three layers were implemented as automatic 

classifiers. The number of neurons in the first layer is defined 

by the number of input features extracted from the epoch to 

be processed. The transfer function of the neurons in this 

layer is a hyperbolic tangent function. The second layer of the 

network contains 6 neurons; the transfer function is a 

logarithmic sigmoid function. The output layer of the 

network consists of 5 neurons each corresponding to one 

sleep/wake stage; the transfer function of each neuron is a 

hyperbolic tangent. The inputs of the classifiers are features 

extracted from EEG only (classifier 1), from EEG+EOG 

(classifier 2), from EEG+EMG (classifier 3), and from 

EEG+EOG+EMG (classifier 4). The most relevant features 

corresponding to each combination of signals were selected 

using an automatic feature selection method. Once the 

features were selected, the neural networks were trained 

using a small sub-set of the data base presented in section 3 

(about 0.8% of the whole data base), and stored for further 

classification. 

The list of features that were proposed to be selected by the 

automatic method is presented below. They can be classified 

in two groups: 

 a first group containing the features that represent 

information from the frequency domain, computed by the 

means of Fourier transformation.  

- A set of five features are used to describe the spectral 

activity of EEG in traditional frequency bands: δ delta [0.5 ; 

4.5] Hz, θ theta [4.5 ; 8.5] Hz, α alpha [8.5 ; 11.5] Hz, σ 

sigma [11.5 ; 15.5] Hz and β beta [15.5 ; 32.5] Hz. The 

features were calculated using Whelsh’s periodogram Fourier 

transformation, on 2 sec periods. Relative powers, Prel, were 

computed in the five frequency bands by dividing the 

absolute powers in each frequency by the sum of powers in 

the [0.5 ; 32.5] Hz frequency band. 

- The relative power of EMG in the high frequency band 

[12.5 ; 32] Hz was calculated. The total frequency band was 

defined as [8 ; 32] Hz. 

- The spectral edge frequency 95 (SEF95) indicates the 

highest frequency below which 95% of the total signal power 

is located. The spectral edge frequency function used in this 

paper is described in (Rampil, et al., 1980). It was calculated 

on the three signals (EEG, EMG, EOG). 

 a second group containing features computed in the time 

domain, all of them calculated on EEG, EOG and EMG. 

- The entropy (entr) of the signal measures the signal 

variability, from the distribution of its amplitude values. The 

algorithm used in this project was published in 

(Moddemeijer, 1989). 

- A set of three quantitative parameters defined by (Hjorth, 

1970) : activity (act), mobility (mob) and complexity (comp). 
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- The 75
th
 percentile (prctile75) defines the value below 

which 75% of the random variable values are located.  

- The standard deviation (std) of a random variable. 

- The skewness (skew) and the kurtosis (kurt) characterizes 

the probability distribution function of a signal. 

On the whole, a set of 33 features was used to characterize 

each epoch. Before the set of features were used for 

classification, each feature was transformed and normalized 

in order to reduce the extreme and outlying values, using the 

transformation strategy described in (Zoubek, et al., 2007). 

The selection of the relevant features using SFS (Sequential 

Forward Selection) was achieved for each of the four 

classifiers, using features corresponding to the signals used 

by the classifier. The same strategy as in (Zoubek, et al., 

2007) was used both to prepare the data sub-set and to 

perform the entire feature selection. Only epochs where all 

signals (EEG, EOG, and EMG) were marked as artefact-free 

were used to prepare the data sub-set. Epochs were selected 

from the data-base presented in section 3. The initial set of 

available features depends on the physiological signals used 

by each neural network. The different combinations of 

signals for which optimal features selection was achieved are: 

EEG, EEG + EOG, EEG + EMG, and EEG + EOG + EMG. 

The optimal feature sets selected by SFS are presented below. 

EEG. The set of relevant features contains four features 

extracted from EEG: Prelβ, entrEEG, Prelσ and Prelα. The 

accuracy obtained on the validation sub-set is 74.5%. 

EEG + EOG. The relevant feature set contains Prelβ, 

mobilityEOG, Prelα, entrEEG, Prelσ, kurtEOG and Prelθ. The 

accuracy obtained on the validation sub-set is 80.7%. 

EEG + EMG. The set of relevant features contains Prelβ, 

mobilityEMG, Prelα, Prelσ, entrEEG, entrEMG and Prelθ. The 

accuracy obtained on the validation sub-set is 79.8%. 

EEG + EOG + EMG. The feature set contains Prelβ, 

mobilityEMG, Prelα, Prelσ, entrEOG, entrEEG kurtEOG. The 

accuracy obtained on the validation sub-set is 82.5%. 

The detailed analysis of the sets of relevant features shows 

one interesting remark. The four optimal features extracted 

from the EEG signal (Prelβ, entrEEG, Prelσ and Prelα) were 

also selected in the other combinations of signals. This is 

similar to the manual scoring performed by the physician. 

During a manual scoring, the physician analyzes at first the 

EEG trace, more specifically the EEG frequency content,   

and then, if his decision is not clear, focuses on EOG and/or 

EMG traces.  

 

3. POLYSOMNOGRAPHIC DATABASE 

3.1 Presentation of the polysomnographic database 

The full database used in this study contains 47 night-time 

polysomnographic recordings obtained from 41 healthy adult 

subjects (19–47 years old, 39 males and 2 females). 

Recordings were made continuously during the night (8 hours 

between 22:00h and 06:00h). Each polysomnographic 

recording contains seven traces of physiological signals. The 

recorded channels are: four EEG channels (C3-A2, P3-A2, 

C4-A1 and P4-A1), one transversal electrooculogram (EOG), 

one chin electromyogram (EMG) and one electrocardiogram 

(ECG). The analog signals were digitized with a sampling 

frequency fs=128 Hz. The data and the precise protocol of the 

investigation are described in the paper (Chapotot, et al. 

2003). Only C3-A2 EEG channel, EOG and EMG signals 

were analyzed in this work. 

Each recording was separately visually scored by two 

independent physicians. Each 20-sec epoch was visually 

scored into one of five sleep/wake stages (wakefulness, 

NREM I, NREM II, SWS, Paradoxical sleep) according to 

the criteria defined in R&K manual. When the signals in the 

epoch were confused, the whole epoch was labelled as 

“undefined”. Only the epoch scored in the same epoch by 

both experts were used in this study. This strategy was 

proposed in order to reduce the uncertainty in the data. Thus, 

the total database of 77,649 epochs was reduced. 10,263 

epochs were excluded. It represents about 13% of the total 

database. So, the final database contains 67,386 epochs. The 

numbers of epochs scored in each sleep stage for the final 

database are presented in Table 1. 

Table 1. Description of the polysomnographic database. 

 wake 
NREM 

I 

NREM 

II 
SWS REM 

Final database 5,376 1,989 33,100 11,498 15,414 

 

4. RESULTS 

This section presents the results obtained during this project. 

The results can be split into two main groups. Firstly, the 

results of the artefact identification strategy are shortly 

presented. Then, the performance of the whole system is 

evaluated on the whole database of polysomnographic 

recordings. The performance of the proposed classification 

system is then compared with a single neural network using 

all three signals, where the artefacts are not analyzed. 

4.1 Results obtained by the artefact detectors 

Artefact identification techniques were applied on the EEG, 

EOG and EMG signals. The results obtained are summarized 

in the Table 2. The lines show the percentage of 20-sec 

epochs marked as artefacted in different sleep/wake stages. 

Each line characterizes one signal. During the automatic 

classification using the two-steps system, these epochs were 

automatically removed by the system. 

A detailed analysis of the results showed that a high number 

of artefacts are present during the wake stage (about 50% of 

wake time), most of them are overflow and high-frequency 

artefacts. In the case of the EMG, overflow occurs rather 

frequently during all stages which is the reason why EMG is 

the most artefacted signal in the available recordings. It 
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seems that the high number of overflow artefacts is caused by 

insufficient settings of the monitoring and/or recording 

devices. Four out of the 47 recordings are extremely 

artefacted. The EEG signal of one of them is continuously 

contaminated by high-frequency artefacts. This recording was 

excluded from the final test, where the automatic classifiers 

were evaluated on the whole night recordings. 

Table 2 Summary of artefact identification performed on 

the physiologic signals 

% wake 
NREM 

I 

NREM 

II 
SWS PS 

EEG 

artefacted  
53.6 4.8 3.0 1.8 3.3 

EOG 

artefacted  
51.5 15.7 6.2 1.4 18.3 

EMG 

artefacted  
44.2 18.3 14.0 12.0 15.3 

 

4.2 Test of the two-steps system on the data-base 

Before the results are shown, it is important to mention that 

the epochs where the EEG signal is artefacted or the epochs 

where all three signals are artefacted cannot be processed by 

the method. These epochs are excluded from the 

classification and the conclusion provided by the system is 

“not classified”. Table 3 shows the number of epochs 

processed by the specific classifiers contained in the 

proposed bank of classifiers. The recordings form a set of 

66,164 epochs with consensual scoring of two physicians. 

Out of this set, 3,765 epochs (5.7%) were excluded because 

of artefacts. So, 62,399 20-sec epochs were finally scored by 

the scoring system proposed. 

Table 3 Percentage of epochs processed by the classifiers 

EEG 
EEG 
EOG 

EEG 
EMG 

EEG 
EOG 

EMG 

excluded 

2.3 11.7 6.8 73.5 5.7 

 

The results of the automatic classification are presented using 

the accuracy parameter Acc (percentage of correctly 

classified epochs) as well as the confusion matrix. The 

columns of this matrix represent the stages classified by the 

automatic classifier and the rows represent the stages 

determined by the experts. Each case (i,j) corresponds to the 

number of examples classified as i by both experts and j by 

the classifier, expressed as a percentage of the examples 

classified as i by the experts. The overall classification 

accuracy is 85.6% which is above the performances of 

existing classification systems. The detailed analysis of the 

results is presented in the Table 4, which shows the confusion 

matrix. 

Table 4 Confusion matrix of the two-steps classification 

system 

classifier 

% 
wake 

NREM 

I 

NREM 

II 
SWS PS 

wake 76.4 14.8 4.0 1.1 3.7 

NREM I 7.9 64.6 7.2 0.6 19.7 

NREM 
II 

1.7 4.6 87.2 4.7 1.8 

SWS 0.1 0 5.2 94.7 0 

ex
p
er
t 

PS 2.1 16.0 1.7 0.4 79.8 

 

The system proposed was compared to a single neural 

network that does not perform artefact identification and 

processing. It means that the classifier has been learned from 

sub-set of data which were not cleared from artefacted 

epochs. The overall classification accuracy of such a 

classifier obtained on the whole data base is 83.2%. The 

confusion matrix is presented in Table 5.  

Table 5 Confusion matrix of the simple classifier without 

artefact identification 

classifier 

% 
wake 

NREM 
I 

NREM 
II 

SWS PS 

wake 81.0 14.0 1.9 1.8 1.3 

NREM I 5.7 67.6 8.6 0.3 17.8 

NREM 

II 
1.3 5.0 87.0 4.8 1.9 

SWS 0.7 0 5.1 94.0 0.2 

ex
p
er
t 

PS 1.5 25.3 2.4 0.5 70. 3 

 

5. DISCUSSION 

About 25% epochs (17,541 epochs) of the whole test 

database contain at least one signal artefacted. However, only 

20% (3,765 epochs) of these 25% epochs (i.e. 5.7% of the 

data base) cannot be used for classification because of 

artefacts (either EEG is artefacted or all signals are 

artefacted) and are excluded. The rest of the epochs can be 

successfully scored on the basis of the features extracted from 

the artefact-free signals. As can be seen in Table 3, most of 

them have only one signal artefacted. This means that the 

strategy proposed in this paper enables the classification of 

13,776 epochs (20% of the data-base) that would be rejected 

by a system detecting artefacts and using only one classifier. 

The classification accuracy computed for these 13,776 

epochs is 81.2%. This value alone is high enough to conclude 

on the interest of the method presented here. The 

classification of sleep epochs using an incomplete set of 

signals to overcome the presence of artefacts is worth the 

effort. 
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The two-steps system was compared to a single classifier that 

does not perform any artefact processing strategy. The two-

steps automatic system performs slightly better than the 

single classifier, with 2.2% increase in overall accuracy, 

calculated on the whole night polysomnographic recordings.  

Both systems are able to correctly classify stage II and SWS 

with more than 85% accuracy for these stages. These stages 

are traditionally easy to classify. The lowest classification 

accuracy was obtained with stage NREM I for both systems, 

which is confused with PS. This is a result that was already 

observed in (Zoubek et al., 2007). This is due to the fact that 

spectral EEG information is about the same in the two stages. 

Indeed, NREM stage I has been called "Skipped REM" by 

several authors who observed high frequency EEG activity 

during this transitional stage. 

Although the two-steps system, combining the artefact 

identification and a bank of classifiers, did not bring very 

significant improvement in the global classification accuracy, 

a detailed analysis of the confusion matrixes shows an 

obvious improvement of about 10% in the classification of 

the PS stage. Although this improvement is partially 

compensated with a slight increase of about 1.5% of the 

NREM I stages confused with REM stages, the two-steps 

system is capable to better distinguish between NREM I and 

PS stages. The improvement is obviously due to the 

elimination of artefacted segments since as seen in Table 2, a 

high portion of artefacted epochs in EOG and EMG are 

present in these two stages. 

The slight decrease observed in the classification of wake 

could be explained by the fact that about half of the wake 

epochs are detected with high amplitude artefacts. It seems 

that the single classifier, learnt on artefacted data, 

misinterpreted the high amplitude artefacts as a true high-

amplitude signal, which is typical of the wake stage and 

facilitated the classification in this stage. 

CONCLUSION  

This paper presents a two-steps decision system for the 

automatic scoring of sleep/wake stages. The automatic 

system consists of two main blocks. In the first block, 

artefact-free signals are selected for each epoch to be 

classified. Then, feature sets are extracted from the artefact-

free signals and classified using an adequate classifier. 

Various artefacts or noise can intermingle with the 

physiological signals and can confuse the information 

characterizing human sleep activity. So, careful artefact 

processing is an important task to be performed in sleep 

analysis. To be able to discover hidden knowledge and/or 

physiological mechanisms characterizing the behaviour of a 

person during a sleep, only the artefact-free signals and 

epochs should be analyzed. In total, eight different artefact 

types are identified in this project. During tests on a large 

database, the highest number of artefacts was detected in the 

EMG signal. The high-amplitude muscle activity often leads 

to the overflow of the monitoring and/or recording device, 

which may be due to a wrong setting of the acquisition 

system. 

The system proposed consists of a bank of classifier. This 

structure was selected so as to enable the analysis of epochs 

containing missing values caused by the presence of artefacts 

in some of the signals. The results showed that, when an 

automatic classifier that requires a complete set of features to 

be computed from all three signals is used, about 20% of the 

epochs cannot be scored because of artefacts.  

Some improvement in the automatic classification could be 

obtained by optimizing the artefact detection algorithms. It 

could lead to a more accurate identification of artefacts and in 

consequence to the extraction of more precise and more 

reliable information (features) from the signals. 
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